Aiimi Insight Engine Florina
User GuidesAiimi
  • Introducing Aiimi Insight Engine
  • Architecture
    • Overview and Key Concepts
    • Search Flows
      • Search Flow Types
      • Smart Filtering
      • Query and Prompt Classification
      • Search Algorithms
      • Extractive and Generative Models
    • Hosting Options
    • Architecture and How It Works
      • Agent Servers
        • Security Agent
        • Source Agent
        • Content Agent
        • Enrichment Agent
        • Job Agent
        • OCR Agent
        • Migration Agent
        • Tika Agent
      • Repository
        • Data Node
        • Proxy Node
        • Kibana Node
      • Gateway and User Interface
      • Document and Data Sources
    • Deployment Options
    • Security
      • User Security
      • Data and Document Security
        • Progressive Access
        • Privileged Access
      • Source System Security
      • Firewalling
      • Agent Servers
        • Security Agent
        • Source Agent
        • Content Agent
        • Enrichment Agent
        • Job Agent
        • OCR Agent
        • Migration Agent
        • Tika Agent
      • Repository
      • Gateway (Web Server)
      • Tools & Utilities
  • Installation
    • Elastic and Kibana Install (Windows)
    • Aiimi Insight Engine Installation (Windows)
      • Installation Security
    • AI Services
      • Prerequisites
      • AI Enrichment Service
        • Installation and Setup
        • Enabling Enrichment Steps
        • Using AI Enrichment Steps
        • Performance and Concurrency
      • AI Model Service
        • Installation and Setup
        • Enabling Providers
        • Private Generative AI
        • Azure Open AI
      • Configuration of Logging
      • Offline Set-up of Models
      • Using SSL
      • Running as a Service (Windows)
      • Using GPUs
      • AI and Semantic Search Set Up
        • Open & Closed Book AI
        • Semantic Search
          • Vectors for Semantic Search
          • Source Configuration
          • Sentence Transformer Models
          • Enrichment
          • Kibana
          • Final Search Flow
    • HTML Cleaner Service
  • Control Hub
    • Configurations
      • Config Management
      • Security Configurations
        • Security - General
        • Security - Source
          • Active Directory
          • Atlassian
          • Azure Active Directory
          • Builtin Security
          • Miro Security
          • Google Directory
          • Slack Security
        • Security - Sync
        • Security - Agents
        • Security - Scheduling
      • Source Configurations
        • Source - General
        • Source - Source
          • Alfresco Kafka
          • Azure Blob Storage
          • BBC Monitoring
          • Big Query Cataloguer
          • BIM360
          • CSV Data Loader
          • Confluence
          • Content Server
          • Data File Cataloguer
          • Document Store
          • DocuSign
          • Dropbox
          • Exchange 365
          • Filesystem
          • Google Bucket
          • Google Drive
          • Google Vault
          • Jira
          • JSON Data Loader
          • Livelink
          • Microsoft Teams
          • Mimecast
          • Miro
          • ODBC Data Loader
          • PowerBi Cataloguer
          • Reuters Connect
          • ShareFile
          • SharePoint
          • SQL Server Cataloguer
          • Slack
          • Versioned Document Store
          • Websites
          • XML Data Loader
        • Source - Crawl
        • Source - Agents
        • Source - Schedule
        • Source - Advanced
      • Enrichment Configurations
        • Creating a Pipeline
          • General
          • Steps
            • AccessMiner
            • AI Classification
            • Anonymiser
            • CAD Extractor
            • Checksum
            • Content Retrieval
            • Copy
            • Data Rule Processor
            • Delete
            • Email Extractor
            • Entity Rule Processor
            • External Links
            • Geotag
            • Google NLP Extractor
            • Google Vision Extractor
            • Metrics Calculation
            • Microsoft Vision Extractor
            • OcrRest
            • Office Metadata
            • PCI Extractor
            • REST
            • Set Document Risk
            • Text Cleaner
            • Tika Text Extraction
            • Trie Entity Extractor
            • Update Metadata
          • Filters
          • Agents
          • Schedule
          • Advanced
      • OCR Engine
      • Job Configurations
        • General
        • Job
          • AutomatedSearchJob
          • Command Job
          • ElasticJob
          • Extended Metrics Job
          • GoogleVaultSAR
          • Google Drive Last Access Date
          • Nightly Events Processor Job
          • Notifications Processor Job
          • Portal Sync Job
          • Purge Job
          • Text Content Merge Job
        • Output
        • Agents
        • Scheduling
      • Migration Configuration
        • General
        • Filter
        • Metadata Mappings
        • Agents
        • Scheduling
        • Advanced
    • Credentials
      • Create a Credential
      • Find a Credential
      • Edit a Credential
      • Delete a Credential
    • Mappings
      • Entities
        • Managing Groups
        • Create an Entity
        • Managing Entities
      • Models
        • Create a New Model
        • Find a Model
        • Enable or Disable a Model
      • Vectors
      • Rank Features
    • Featured Links
    • AI Settings
      • Classifications
      • Class
      • Class Rules
      • AI Classification
    • Global Settings
      • General
        • Stackdriver
        • Document Recommendations
        • Searchable PDF Storage
        • Versioning
        • Results
        • Marking Useful Results
        • Folder Browsing
        • Cascading Search
        • Search Suggestions
        • Delve Settings
        • Miscellaneous
      • Authentication
      • Application Access
      • Search Relevancy
        • Core Settings
        • Makers Algorithm
        • Filename Boost Layer
        • Minimum Matching Terms Filter
        • Field Boost
        • Modified Date Boosting
        • Hit Highlighting
        • Why My Search Matched
        • Data Search Strategy
      • Search Performance
      • Filtering
      • Thumbnails
      • Presets
      • Code of Conduct
      • Metrics
      • Viewer
        • Redacting Information
        • Watermarking
      • SAR
        • Importing Data For A SAR
        • SAR Disclosure Document Storage
        • Getting SAR data from Google Vault
        • SAR Access
        • SAR File Status
      • Collections
      • Disclosure Portal
        • Disclosure Portal Set Up
        • SARs From The Portal
        • Email Delivery Settings
          • Delivery Settings
          • Brand Settings
          • Customise Emails
        • SMS Delivery Settings
        • Requestor Message Limit
        • Attachment Configuration
        • Password Configuration
        • File Scanner Configurator
      • Visualisations
        • Related Result Connections Diagram
        • Event Timeline
        • Timeline Lens Activity Chart
        • Relationship Map
      • Notifications
      • Map Lens
      • App
      • Theming
        • General
        • Layout
        • Colours
      • User Avatar
      • Related Results
      • OData API
      • Bulk Search
        • Managing a Bulk Search
      • Search Flows
        • Create a Search Flow
          • General
          • Query Classification Step
          • Search Steps
          • Model Steps
      • Uploads
      • Security
    • User Settings
    • Stats
      • Data Views
  • API Guides
    • Insight API Guide
      • Swagger Documentation
      • Trying Some Endpoints
      • Search Filter
      • Hits / Items
      • Inspecting REST Calls
    • Data Science API Guide
      • REST Interface
        • Login
        • Datasets
        • Fields
        • Field Statistics
        • Search
        • Scroll
        • Update
      • Python Wrapper
        • Login
        • Datasets
        • Fields
        • Field Statistics
        • Search
        • Query Builders
        • Scroll
        • Scroll Search
        • Update Single Document
        • Bulk Update
    • Creating a Native Enrichment Step
      • Creating an Enrichment Step
        • Creating the Core Classes
        • Extending our Enrichment Step
        • Adding a Configuration Template
        • Adding the Enrichment Step
        • Creating an Enrichment Pipeline
      • Other Tasks
        • Entities, Metadata and Data
        • Accessing the Repository
      • Example Code
      • Troubleshooting
    • Creating a Python Enrichment Step
      • Creating an Enrichment Step
        • Running the Example from Command Line
        • Running the Example
      • Creating Your Own Step
      • Adding or Changing Entities, Metadata
  • whitepapers and explainers
    • From a Billion To One – Mastering Relevancy
    • Methods for Text Summarization
      • Application
      • Technology Methods
      • Commercial Tools
      • Key Research Centres
      • Productionisation
      • Related Areas of Text Analytics
      • Conclusion
      • References
Powered by GitBook
On this page
  1. whitepapers and explainers
  2. Methods for Text Summarization

Productionisation

As the language of choice for industrial data scientists, Python provides the widest range of mature libraries for solving data science problems.

  • The Natural Language Toolkit (NLTK) is a widely-used platform for computational linguistics. It provides critical and transferable functionality such as calculations of string similarity and stopword detection. An extractive summarizer can be quickly assembled using NLTK to parse sentences, generate a similarity matrix, rank sentences using an unsupervised method such as TextRank and select highest performing sentences.

  • An abstractive summariser can be architected using a deep learning technique called sequence-to-sequence modelling [18]. Text sequences are first encoded to normalise their lengths. A neural network then decodes the sequences and predicts the next word in the sequence given the inputs. After training the model, it is applied to new sequences to compress a given text input by predicting subsequent terms.

  • Keras is a high-level API which enables fast implementation of neural network experiments. A typical summarizer implemented through Keras would clean the text, establish maximum sequence lengths, split the data into train and test sets and construct a model using a recurrent neural network architecture such as Long Short-Term Memory (LSTM). This will create encoder and decoder layers for composing summaries [18].

PreviousKey Research CentresNextRelated Areas of Text Analytics