Aiimi Insight Engine Florina
User GuidesAiimi
  • Introducing Aiimi Insight Engine
  • Architecture
    • Overview and Key Concepts
    • Search Flows
      • Search Flow Types
      • Smart Filtering
      • Query and Prompt Classification
      • Search Algorithms
      • Extractive and Generative Models
    • Hosting Options
    • Architecture and How It Works
      • Agent Servers
        • Security Agent
        • Source Agent
        • Content Agent
        • Enrichment Agent
        • Job Agent
        • OCR Agent
        • Migration Agent
        • Tika Agent
      • Repository
        • Data Node
        • Proxy Node
        • Kibana Node
      • Gateway and User Interface
      • Document and Data Sources
    • Deployment Options
    • Security
      • User Security
      • Data and Document Security
        • Progressive Access
        • Privileged Access
      • Source System Security
      • Firewalling
      • Agent Servers
        • Security Agent
        • Source Agent
        • Content Agent
        • Enrichment Agent
        • Job Agent
        • OCR Agent
        • Migration Agent
        • Tika Agent
      • Repository
      • Gateway (Web Server)
      • Tools & Utilities
  • Installation
    • Elastic and Kibana Install (Windows)
    • Aiimi Insight Engine Installation (Windows)
      • Installation Security
    • AI Services
      • Prerequisites
      • AI Enrichment Service
        • Installation and Setup
        • Enabling Enrichment Steps
        • Using AI Enrichment Steps
        • Performance and Concurrency
      • AI Model Service
        • Installation and Setup
        • Enabling Providers
        • Private Generative AI
        • Azure Open AI
      • Configuration of Logging
      • Offline Set-up of Models
      • Using SSL
      • Running as a Service (Windows)
      • Using GPUs
      • AI and Semantic Search Set Up
        • Open & Closed Book AI
        • Semantic Search
          • Vectors for Semantic Search
          • Source Configuration
          • Sentence Transformer Models
          • Enrichment
          • Kibana
          • Final Search Flow
    • HTML Cleaner Service
  • Control Hub
    • Configurations
      • Config Management
      • Security Configurations
        • Security - General
        • Security - Source
          • Active Directory
          • Atlassian
          • Azure Active Directory
          • Builtin Security
          • Miro Security
          • Google Directory
          • Slack Security
        • Security - Sync
        • Security - Agents
        • Security - Scheduling
      • Source Configurations
        • Source - General
        • Source - Source
          • Alfresco Kafka
          • Azure Blob Storage
          • BBC Monitoring
          • Big Query Cataloguer
          • BIM360
          • CSV Data Loader
          • Confluence
          • Content Server
          • Data File Cataloguer
          • Document Store
          • DocuSign
          • Dropbox
          • Exchange 365
          • Filesystem
          • Google Bucket
          • Google Drive
          • Google Vault
          • Jira
          • JSON Data Loader
          • Livelink
          • Microsoft Teams
          • Mimecast
          • Miro
          • ODBC Data Loader
          • PowerBi Cataloguer
          • Reuters Connect
          • ShareFile
          • SharePoint
          • SQL Server Cataloguer
          • Slack
          • Versioned Document Store
          • Websites
          • XML Data Loader
        • Source - Crawl
        • Source - Agents
        • Source - Schedule
        • Source - Advanced
      • Enrichment Configurations
        • Creating a Pipeline
          • General
          • Steps
            • AccessMiner
            • AI Classification
            • Anonymiser
            • CAD Extractor
            • Checksum
            • Content Retrieval
            • Copy
            • Data Rule Processor
            • Delete
            • Email Extractor
            • Entity Rule Processor
            • External Links
            • Geotag
            • Google NLP Extractor
            • Google Vision Extractor
            • Metrics Calculation
            • Microsoft Vision Extractor
            • OcrRest
            • Office Metadata
            • PCI Extractor
            • REST
            • Set Document Risk
            • Text Cleaner
            • Tika Text Extraction
            • Trie Entity Extractor
            • Update Metadata
          • Filters
          • Agents
          • Schedule
          • Advanced
      • OCR Engine
      • Job Configurations
        • General
        • Job
          • AutomatedSearchJob
          • Command Job
          • ElasticJob
          • Extended Metrics Job
          • GoogleVaultSAR
          • Google Drive Last Access Date
          • Nightly Events Processor Job
          • Notifications Processor Job
          • Portal Sync Job
          • Purge Job
          • Text Content Merge Job
        • Output
        • Agents
        • Scheduling
      • Migration Configuration
        • General
        • Filter
        • Metadata Mappings
        • Agents
        • Scheduling
        • Advanced
    • Credentials
      • Create a Credential
      • Find a Credential
      • Edit a Credential
      • Delete a Credential
    • Mappings
      • Entities
        • Managing Groups
        • Create an Entity
        • Managing Entities
      • Models
        • Create a New Model
        • Find a Model
        • Enable or Disable a Model
      • Vectors
      • Rank Features
    • Featured Links
    • AI Settings
      • Classifications
      • Class
      • Class Rules
      • AI Classification
    • Global Settings
      • General
        • Stackdriver
        • Document Recommendations
        • Searchable PDF Storage
        • Versioning
        • Results
        • Marking Useful Results
        • Folder Browsing
        • Cascading Search
        • Search Suggestions
        • Delve Settings
        • Miscellaneous
      • Authentication
      • Application Access
      • Search Relevancy
        • Core Settings
        • Makers Algorithm
        • Filename Boost Layer
        • Minimum Matching Terms Filter
        • Field Boost
        • Modified Date Boosting
        • Hit Highlighting
        • Why My Search Matched
        • Data Search Strategy
      • Search Performance
      • Filtering
      • Thumbnails
      • Presets
      • Code of Conduct
      • Metrics
      • Viewer
        • Redacting Information
        • Watermarking
      • SAR
        • Importing Data For A SAR
        • SAR Disclosure Document Storage
        • Getting SAR data from Google Vault
        • SAR Access
        • SAR File Status
      • Collections
      • Disclosure Portal
        • Disclosure Portal Set Up
        • SARs From The Portal
        • Email Delivery Settings
          • Delivery Settings
          • Brand Settings
          • Customise Emails
        • SMS Delivery Settings
        • Requestor Message Limit
        • Attachment Configuration
        • Password Configuration
        • File Scanner Configurator
      • Visualisations
        • Related Result Connections Diagram
        • Event Timeline
        • Timeline Lens Activity Chart
        • Relationship Map
      • Notifications
      • Map Lens
      • App
      • Theming
        • General
        • Layout
        • Colours
      • User Avatar
      • Related Results
      • OData API
      • Bulk Search
        • Managing a Bulk Search
      • Search Flows
        • Create a Search Flow
          • General
          • Query Classification Step
          • Search Steps
          • Model Steps
      • Uploads
      • Security
    • User Settings
    • Stats
      • Data Views
  • API Guides
    • Insight API Guide
      • Swagger Documentation
      • Trying Some Endpoints
      • Search Filter
      • Hits / Items
      • Inspecting REST Calls
    • Data Science API Guide
      • REST Interface
        • Login
        • Datasets
        • Fields
        • Field Statistics
        • Search
        • Scroll
        • Update
      • Python Wrapper
        • Login
        • Datasets
        • Fields
        • Field Statistics
        • Search
        • Query Builders
        • Scroll
        • Scroll Search
        • Update Single Document
        • Bulk Update
    • Creating a Native Enrichment Step
      • Creating an Enrichment Step
        • Creating the Core Classes
        • Extending our Enrichment Step
        • Adding a Configuration Template
        • Adding the Enrichment Step
        • Creating an Enrichment Pipeline
      • Other Tasks
        • Entities, Metadata and Data
        • Accessing the Repository
      • Example Code
      • Troubleshooting
    • Creating a Python Enrichment Step
      • Creating an Enrichment Step
        • Running the Example from Command Line
        • Running the Example
      • Creating Your Own Step
      • Adding or Changing Entities, Metadata
  • whitepapers and explainers
    • From a Billion To One – Mastering Relevancy
    • Methods for Text Summarization
      • Application
      • Technology Methods
      • Commercial Tools
      • Key Research Centres
      • Productionisation
      • Related Areas of Text Analytics
      • Conclusion
      • References
Powered by GitBook
On this page
  1. API Guides
  2. Creating a Python Enrichment Step

Adding or Changing Entities, Metadata

PreviousCreating Your Own StepNextFrom a Billion To One – Mastering Relevancy

A very common task that you can use a Python enrichment step to do is add or edit metadata or entity values.

To do this, first ensure the metadata item or entity exists in Control Hub and is of the right data type. For example:

Let’s edit our example to add an ‘ner person’ entity (note that entity groups are always camel case and not upper case as shown in Control Hub).

Note the line that adds the ‘ner’ group and then adds the ‘person’ list to it.

def do_example(work):  
    print("BEFORE:")
    print(work)
    print()

    # add your code here to manipulate the EnrichmentWorkItem structure
    logging.info("Generating example for: %s", work['File']['Name'])
    work['File']['TextContent'] += ' - ' + example_lib_function(example_config["text"])
    work["File"]["Entities"]["ner"] = {}
    work["File"]["Entities"]["ner"]["person"] = [ "Paul Maker", "Steve Salvin" ]
    print("AFTER:")
    print(work)
    return work

We can also test this from main by setting up our work item as required with entities.

if __name__ == "__main__":
    text_content = "This is some test text"
    work = {}
    work["File"] = {}
    work["File"]["Name"] = "Test Document.txt"
    work["File"]["Extension"] = "txt"
    work["File"]["TextContent"] = text_content
    work["File"]["Entities"] = {}
    work["File"]["Entities"]["ner"] = {}
    do_example(work)

If we add a new document, or update the test document and re-run the crawl and then re-run the enrichment pipeline we should see the following in Aiimi Insight Engine.

Here we can see our ner person entities in Aiimi Insight Engine document details page for the search result.