Aiimi Insight Engine Habanero
User GuidesAiimi
  • Introducing Aiimi Insight Engine
  • Architecture
    • Overview and Key Concepts
    • Search Flows
      • Search Flow Types
      • Smart Filtering
      • Query and Prompt Classification
      • Search Algorithms
      • Extractive and Generative Models
    • Hosting Options
    • Architecture and How It Works
      • Agent Servers
        • Security Agent
        • Source Agent
        • Content Agent
        • Enrichment Agent
        • Job Agent
        • OCR Agent
        • Migration Agent
        • Tika Agent
      • Repository
        • Data Node
        • Proxy Node
        • Kibana Node
      • Gateway and User Interface
      • Document and Data Sources
    • Deployment Options
    • Security
      • User Security
      • Data and Document Security
        • Progressive Access
        • Privileged Access
      • Source System Security
      • Firewalling
      • Agent Servers
        • Security Agent
        • Source Agent
        • Content Agent
        • Enrichment Agent
        • Job Agent
        • OCR Agent
        • Migration Agent
        • Tika Agent
      • Repository
      • Gateway (Web Server)
      • Tools & Utilities
  • Installation
    • Elastic and Kibana Install (Windows)
    • Aiimi Insight Engine Installation (Windows)
      • Installation Security
      • Certificates in a Key Vault
      • SAR Configuration
      • CSOM Bridge Set Up
    • AI Services
      • Prerequisites
      • AI Enrichment Service
        • Installation and Setup
        • Enabling Enrichment Steps
        • Using AI Enrichment Steps
        • Performance and Concurrency
      • AI Model Service
        • Installation and Setup
        • Enabling Providers
        • Private Generative AI
        • Azure Open AI
        • Enabling AI History
        • HTML Cleaner Service
      • Configuration of Logging
      • Offline Set-up of Models
      • Using SSL
      • Running as a Service (Windows)
      • Using GPUs
      • AI and Semantic Search Set Up
        • Open & Closed Book AI
        • Semantic Search
          • Vectors for Semantic Search
          • Source Configuration
          • Sentence Transformer Models
          • Enrichment
          • Kibana
          • Final Search Flow
    • Email Threading Upgrade
  • Control Hub
    • Configurations
      • Config Management
      • Security Configurations
        • Security - General
        • Security - Source
          • Active Directory
          • Atlassian
          • Azure Active Directory
          • Builtin Security
          • Miro Security
          • Google Directory
          • Slack Security
        • Security - Sync
        • Security - Agents
        • Security - Scheduling
      • Source Configurations
        • Source - General
        • Source - Source
          • Alfresco Kafka
          • Azure Blob Storage
          • BBC Monitoring
          • Big Query Cataloguer
          • BIM360
          • CSV Data Loader
          • Confluence
          • Content Server
          • Data File Cataloguer
          • Document Store
          • DocuSign
          • Dropbox
          • Exchange 365
          • Filesystem
          • Google Bucket
          • Google Drive
          • Google Vault
          • Jira
          • JSON Data Loader
          • Livelink
          • Microsoft Teams
          • Mimecast
          • Miro
          • ODBC Data Loader
          • PowerBi Cataloguer
          • Reuters Connect
          • ShareFile
          • SharePoint
            • Azure Portal and Azure AD Authentication
          • SharePoint Legacy
          • SQL Server Cataloguer
          • Slack
          • Versioned Document Store
          • Websites
          • XML Data Loader
        • Source - Crawl
        • Source - Agents
        • Source - Schedule
        • Source - Advanced
      • Enrichment Configurations
        • Creating a Pipeline
          • General
          • Steps
            • AccessMiner
            • AI Classification
            • Anonymiser
            • CAD Extractor
            • Checksum
            • Content Retrieval
            • Copy
            • Data Rule Processor
            • Delete
            • Email Extractor
            • Entity Rule Processor
            • External Links
            • Geotag
            • Google NLP Extractor
            • Google Vision Extractor
            • Metrics Calculation
            • Microsoft Vision Extractor
            • OcrRest
            • Office Metadata
            • PCI Extractor
            • REST
            • Set Document Risk
            • Text Cleaner
            • Tika Text Extraction
            • Trie Entity Extractor
            • Update Metadata
          • Filters
          • Agents
          • Schedule
          • Advanced
      • OCR Engine
      • Job Configurations
        • General
        • Job
          • AutomatedSearchJob
          • Command Job
          • ElasticJob
          • Extended Metrics Job
          • File Extractor
          • GoogleVaultSAR
          • Google Drive Last Access Date
          • Nightly Events Processor Job
          • Notifications Processor Job
          • Portal Sync Job
          • Purge Job
          • Text Content Merge Job
        • Output
        • Agents
        • Scheduling
      • Migration Configuration
        • General
        • Filter
        • Metadata Mappings
        • Agents
        • Scheduling
        • Advanced
    • Credentials
      • Create a Credential
      • Find a Credential
      • Edit a Credential
      • Delete a Credential
    • Mappings
      • Entities
        • Group Management
        • Create an Entity
        • Managing Entities
      • Models
        • Create a New Model
        • Find a Model
        • Enable or Disable a Model
      • Vectors
      • Rank Features
    • Featured Links
    • AI Settings
      • Classifications
      • Class
      • Class Rules
      • AI Classification
    • User Settings
    • Stats
      • Data Views
    • Global Settings
      • General
        • Stackdriver
        • Document Recommendations
        • Searchable PDF Storage
        • Versioning
        • Results
        • Marking Useful Results
        • Folder Browsing
        • Cascading Search
        • Search Suggestions
        • Miscellaneous
      • Authentication
      • App Settings
      • Application Access
      • Thumbnails
      • Presets
      • Code of Conduct
      • Metrics
      • Viewer
        • Preview Configurations
        • Redacting Information
        • Watermarking
      • SAR
        • Importing Data For A SAR
        • SAR Disclosure Document Storage
        • Getting SAR data from Google Vault
        • SAR Access
        • SAR File Status
      • Disclosure Portal
        • Disclosure Portal Set Up
        • SARs From The Portal
        • Email Delivery Settings
          • Delivery Settings
          • Brand Settings
          • Customise Emails
        • SMS Delivery Settings
        • Requestor Message Limit
        • Attachment Configuration
        • Password Configuration
        • File Scanner Configurator
      • Collections
      • Visualisations
        • Related Result Connections Diagram
        • Event Timeline
        • Timeline Lens Activity Chart
        • Relationship Map
      • Notifications
      • Map Lens
      • Theming
        • General
        • Layout
        • Site Message
        • Colours
      • User Avatar
      • OData API
      • Uploads
      • Security
    • Search Settings
      • Search Relevancy
        • Core Settings
        • Makers Algorithm
        • Filename Boost Layer
        • Minimum Matching Terms Filter
        • Field Boost
        • Modified Date Boosting
        • Hit Highlighting
        • Why My Search Matched
        • Data Search Strategy
      • Bulk Search
        • Managing a Bulk Search
      • Search Flows
        • Create a Search Flow
          • General
          • Query Classification Step
          • Search Steps
          • Model Steps
      • Filtering
      • Search Performance
      • Related Results
  • API Guides
    • Insight API Guide
      • Swagger Documentation
      • Trying Some Endpoints
      • Search Filter
      • Hits / Items
      • Inspecting REST Calls
    • Data Science API Guide
      • REST Interface
        • Login
        • Datasets
        • Fields
        • Field Statistics
        • Search
        • Scroll
        • Update
      • Python Wrapper
        • Login
        • Datasets
        • Fields
        • Field Statistics
        • Search
        • Query Builders
        • Scroll
        • Scroll Search
        • Update Single Document
        • Bulk Update
    • Creating a Native Enrichment Step
      • Creating an Enrichment Step
        • Creating the Core Classes
        • Extending our Enrichment Step
        • Adding a Configuration Template
        • Adding the Enrichment Step
        • Creating an Enrichment Pipeline
      • Other Tasks
        • Entities, Metadata and Data
        • Accessing the Repository
      • Example Code
      • Troubleshooting
    • Creating a Python Enrichment Step
      • Creating an Enrichment Step
        • Running the Example from Command Line
        • Running the Example
      • Creating Your Own Step
      • Adding or Changing Entities, Metadata
  • whitepapers and explainers
    • From a Billion To One – Mastering Relevancy
    • Methods for Text Summarization
      • Application
      • Technology Methods
      • Commercial Tools
      • Key Research Centres
      • Productionisation
      • Related Areas of Text Analytics
      • Conclusion
      • References
Powered by GitBook
On this page
  • Unzip the AI Service Distro
  • Install Python
  • If Python Doesn't Exist
  • If Python Exists
  • Configure and Install Prerequisites
  • Windows ONLY - Ensure long path support
  • Setup NLTK
  1. Installation
  2. AI Services

Prerequisites

There are a number of prerequisites that are required for all AI Services.

Unzip the AI Service Distro

  • Create a folder called InsightMaker.Python.

    • This drive needs enough space for the Python virtual environment. These are around 6GB per service.

  • Extract the distro to a sub-folder with the same name as the original zip file.

    • AIEnrichmentService

    • AIModelService

Install Python

  1. Check if you have a version of Python running on the server.

    • You can check the PATH and location of installed applications

    • Or, open a prompt and run the following:

python --version

If Python Doesn't Exist

Install Python

  1. Install Python 3.12.8

    • To run Python REST services as a Window Service you need to install Python for ‘all users’.

Create a Python Virtual Environment

  1. Create a venv folder in the root of the respective AI Service you are setting up.

    • .\InsightMaker.Python\AIEnrichmentService

    • .\InsightMaker.Python\AIModelService

  2. Open command prompt.

  3. Navigate to the venv folder.

  4. Create the venv with the following python command: python -m venv ./

If Python Exists

Install Python

  1. Install Python 3.12.8

    • To run Python REST services as a Window Service you need to install Python for ‘all users’.

    • Do not add to the system variables or path as this may impact existing Python applications on the server.

  2. Open an administrator command prompt.

  3. Install virtualenv using the following command: pip install virtualenv

Create a Python Virtual Environment

  1. Create a venv folder in the root of the respective AI Service you are setting up.

    • .\InsightMaker.Python\AIEnrichmentService

    • .\InsightMaker.Python\AIModelService

  2. Open command prompt.

  3. Navigate to the venv folder.

  4. Create the venv with the following python command: python -m virtualenv ./ -p="C:\Program Files\Python312\python.exe"

Replace the -p parameter with the path to the Python 3.12.8 executable.

Configure and Install Prerequisites

Windows ONLY - Ensure long path support

  1. Using Regedit:

    • HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\FileSystem

    • LongPathsEnabled

    • DWORD = 1

Setup NLTK

Many of the AI Model Services and AI Enrichment Service require NLTK.

  • Install the nltk Python libraries using: pip install nltk

  • Install the NLTK data (models) to a location on the server using:python -m nltk.downloader all -d <LOCATION>

  • Set an environment variable to point at the NLTK data using: NLTK_DATA=LOCATION

PreviousAI ServicesNextAI Enrichment Service

Last updated 3 months ago

For more information see the NLTK documentation:

https://www.nltk.org/data.html